Proceedings of DETC’'00

2000 ASME Design Engineering Technical Conferences

September 10-13, 2000, Baitimore, Maryland

DETC2000/DFM-14011

APPLYING CASE-BASED REASONING TO MECHANICAL BEARING DESIGN

Xiaoll Qin'

William C. Regli?

Geometric and Intelligent Computing Laboratory
Department of Mathematics and Computer Science
Drexel University
3141 Chestnut Street
Philadelphia, PA 19104

ABSTRACT

Case-Based Reasoning (CBR) provides a promising
methodology for solving many complex engineering design
problems. CBR is based on the idea that past problem-solving
experiences can be reused and learned from in solving new prob-
lems. This paper presents an overview of a CBR design system
to assist human engineers in performing mechanical bearing de-
sign. It retrieves previously designed cases from a case-base and
uses adaptation techniques to adapt them to satisfy the current
problem requirements. Qur approach combines parametric adap-
tations and constraint satisfaction adaptations. The technique of
parametric adaptation considers not only parameter substitution,
but also the interrelationships between the problem definition and
its solution. The technique of constraint satisfaction adaptation
provides a method to globally check the design requirements to
assess case adaptability. Currently, our system has been tested in
the rolling bearing domain.

INTRODUCTION

Case-Based Reasoning (CBR) techniques are a promising
methodology for solving many problems in engineering design.
CBR is a subfield of Artificial Intelligence (AI) that is premised
on the idea that past problem-solving experiences can be reused

'Web: http://www.mcs.drexel.edu/~gxqin; Email:
xq22@drexel . edu.
2web: http://www.mcs.drexel .edu/~wregli; Email:

regli@drexel.edu.

and learned from in solving new problems. This paper discusses
the use of case-based reasoning techniques to build a CBR sys-
tem to solve a domain-specific problem — namely, the bearing
design problem in engineering applications. This paper presents
a three-phase approach to building a practical CBR system for
this domain: *

1. Knowledge Representation for Bearing Design Problems:
building a knowledge-base;

2. Case-Based Reasoning Engine: design of the reasoner;

3. Implementation and Examples: illustrations of how a CBR
system can be used during the design phase.

Foundation of Case-Based Reasoning Techniques

The Case-Based Reasoning Cycle (1) precisely defines a
methodology to build a CBR system for a given domain. A
case-based reasoning system can be viewed as a model which is
a combination of a case-base and knowledge reasoning process
modules. These modules form a case-based reasoning shell, also
called a reasoner. They are the functions used to manipulate the
knowledge in the case-base and they act to process user inputs,
recall similar cases, retrieve the most similar case, evaluate and
adapt the retrieved case and update the case memory. The mod-
ules interact with the case-base during processing.

Normally, following problems are involved in a CBR sys-
tem: knowledge acquisition, knowledge representation, case
retrieval, case adaptation and the learning mechanism.

1. Knowledge acquisition: How to acquire useful knowledge

Copyright (C) 2000 by ASME

from application problem domain.

2. Knowledge representation: How to use a formal language
to represent certain domain knowledge. The knowledge rep-
resentation theory of case-based reasoning systems primar-
ily concerns how to structure knowledge stored in the case-
base to facilitate effective searching, matching, retrieving,
adapting and learning. One influentia! knowledge represen-
tation model is the dynamic memory model (5). 1t was de-
veloped by Schankand based on his theory, Memory Orga-
nization packet (MOP) theory.

3. Case retrieval: How to efficiently retrieve from the case-
base the case most similar to the current problem. There
are two sub-processes involved in case retrieval: one is to
retrieve a set of similar cases from case-base, another is to
find the most similar case in this set. The first sub-process is
accomplished by designing appropriate index scheme for the
domain problem. The second task is done using the Nearest
Neighbor Matching Algorithm (NNM) (4).

4. Case Adaptation Strategies: After a CBR system retrieves
the most similar case from the case-base, it normally needs
to perform adaptation on this retrieved case. There are sev-
eral adaptation strategies which can be used in a CBR sys-
tem. They are Simple Substitution, Parameter Adjustment
and Constraints Satisfaction (4).

5. Learning Mechanism: Learning is the last step in the Case-
Based Reasoning system. In a CBR system, after a new
problem is solved, the case-base is changed by adding the
new case into it. By doing that, the system can retain more
and more knowledge along with problem-soiving augmen-
tation and achieve learning.

Bearing Design Problems and Knowledge Representa-
tion

Bearings are standard mechanical elements that play a very
important role in product design and are used extensively in a
wide array of mechanical artifacts. They usually support rotating
shafts and make relative rotation possible among shafts and other
parts, like gears.

Whenever a newly-designed machine requires rotating func-
tion, design of its bearings must also be performed. A bearing
designed for a certain machine must satisfy the requirements of
the overall assembly structure and working environment. The
basic way to solve this problem is to perform intensive calcu-
lations based on the working conditions and develop a bearing
which can satisfy these working requirements. Some computer
programs have been developed to help deal with these intensive
calculations (3). Although these approaches release human en-
gineers from manual mathematical calculation, they can not per-
form higher level intellectual actions, like simulating human rea-
soning process.

This research has taken a different approach to solving the
bearing design problem using Case-Based Reasoning (CBR) ...
a methodology which provides a very promising way to organize,
construct and program the human knowledge into a system. Thus
system can contain human experience, and respond to the real
world based on its build-in reasoning mechanisms.

Because of complexity of the bearing design problem, the
knowledge space in this domain is incomplete and dynamic.
Therefore, knowledge acquisition has to be achieved by specify-
ing only the important features of the design problem. Features
are only collected if they help solve the specific probiem. Other
knowledge that is not directly related to solving the problem is
discarded. In our approach, we predefine a set of important fea-
tures for the bearing design problem, and knowledge acquisition
is done manually by a knowledge engineer. Because of restric-
tions mentioned above, the system we built has some limitations.
We will briefly talk about them in the last section.

A language called CASL (2) was chosen to represent knowl-
edge pertaining to bearing design in our case-base. The structure
of case-base is based on Memory Organization Packet (MOP)
theory (5).

Case-Based Reasoning Enélne

The case-based reasoning engine is the reasoning system
which allows designers to use archived cases to solve bearing
design problem. Once domain knowledge has been used to build
the case-base, organize memory, build indices, etc., the reasoning
engine can execute searches based on the index scheme. The en-
gine can also perform other reasoning processes, including case
retrieval, adaptation and system learning.

Our CBR Engine for Bearing Design is implemented with C
and the Microsoft Visual C++ programming environment. The
kernel of CBR Engine is based on work from the computer sci-
ence department, University of Wales (2).

KNOWLEDGE REPRESENTATION FOR BEARING DE-
SIGN

Problem Formulation

There are two basic types of bearings commonly used in
industry areas: rolling bearings and sliding bearings. Only the
former are discussed here. Rolling bearings are further divided
into subcategory according to the geometric shape of their rolling
components. Some have rolling components that are cylinders
and some are spheres, called ball bearings.

The basic components of a bearing are an inner ring, an outer
ring, the rolling components and a supporting cage which keeps
the rolling components distributed uniformly. In Figure 1, the
cages are not shown. Normally, the bearings are installed on a

Copyright (C) 2000 by ASME

ylindrical roller bearing

Deep groove ball bearing

Figure 1. Bearings and where they are installed

rotating shaft. The inner ring of a bearing is fastened on a shaft
and the outer ring is installed in a housing. The fundamental
purpose of a bearing is to transmit the load between a stationary
part of a machine (commonly a housing) and the rotating part of
the machine (commonly a shaft) with the minimum resistance.

What is meant by a bearing design problem? For purposes
of this work, “bearing design” is interpreted from the perspec-
tive of an application engineer, i.e., he (she) designs bearings for
machines or any applications where bearings are needed. When
performing design, he (she) must consider:

1. The working environment for the design problem, including
ambient conditions, load conditions, etc..

2. Based on this information and information given by a manu-
facturer’s catalog, which gives different bearings’ maximum
load capacity, speed limit, etc., how to design and calculate
the size of bearing which is suitable for shaft diameter, maxi-
mum dynamic life under the working load, maximum speed,
etc..

An application engineer’s goal in designing bearings for ma-
chinery is to make correct decisions in regard to bearing type,
size, and material, through analysis of the working environment
and extended calculation based on the given working conditions.
Appropriate bearing design is vital to the trouble-free operation
of machinery.

Important design factors. The inputs of a bearing design
problem are the working conditions, including load to be applied
on the bearings, shaft speed, lubrication (i.e., oil or grease), as-
sembly space, ambient temperature, corrosive atmospheres and
vibrations, etc.. There are also other important factors which
must be considered, such as misalignment, quiet running, etc..
Figure 2 shows some primary design factors which a designer
might consider.

ent
\l ’ Quiet Running
L.oads SEff
Precision |
Speed
Axial Displacement

‘ Figure 2. . Bearing properties

| Needte rolter
bearing

B i
Shaft
Housing

Figure 3. Available space

In this work, we consider the following design factors:

1. Load, see Figure 3. The magnitude of the load is the factor
which usually determines the size of the bearing to be used.
The direction of loads applied on the bearings is also very
important.

2. Speed, see Figure 3. The speed at which rolling bearings can
operate is limited by the permissible operating temperature.

3. Available Space, see Figure 3. When radial space is limited,
bearings with a small cross section, particularly those with
low cross section height, must be chosen. For example, the
needle rolleg bearings are the best choice for this situation.

¥
Calculations. When a designer designs bearings for his ma-
chine, not only does he need to consider the factors mentioned
above, but he also needs to perform a series of calculations. One
of the primary calculations is to predict the probability of bear-

Copyright (C) 2000 by ASME

W=X*Fr + Y*Fs
Fr: radial load
Fa: axiai load
X: axial coefficient
Y: radial coefficient

Vo
W: equivalent load

} L10=(C/P)*p
L10: bearing life

:.:)| P=3or (ball bearing)
& p=3/10(roller bearing)

Fa

Figure 4. Calculations

ing failure: how long can a bearing be used in a certain working
environment? The importance of this calculation is that it is the
vital reference for predicting normal operation of the machine,
trouble-shooting and maintenance to the machine.

The first step in predicting bearing life expectancy is to cal-
culate the equivalent load applied on the bearing. The Figure 4
illustrates this calculation. Any load applied on a bearing can be
decomposed into a radial load and an axial load. The radial load
and axial load are the component forces of a equivalent com-
pound force whose directions are radia/ and axial. Normally,
a radial load and an axial load can be obtained from a special
testing instrument, and the equivalent compound load can be cal-
culated from these measurements.

The variants of the formula given in Figure 4 can be ex-
pressed as follows:

Theoretical formula for computing equivalent load applied
on a bearing (6):

(1 —sina)F, + (cosB)F;

W=
(2.5 —sinay)

W=F, ifFR>W

Heuristic formula for computing equivalent load applied on
a bearing (6):

W =0.37F, + 2.0F,

W=EFE, ifF.>W

where

W Bearing load (Newtons)
F,: Radial load applied to bearing (Newtons)
F;: Axial load applied to bearing (Newtons)
o Operating contact angle (radians)

B: Initial contact angle (radians)

The formula for computing bearing life can be expressed
as (6):

3
Lp= <—) ; (in millions of revolutions)

OR

C*x10%

Ly = SOrNe W3,(mhours)

where

b~
3

¥Fzaq3 s

: The bearing life in millions of revolutions
The bearing life in hours

load rating constant (Newtons)

olutions)

: Speed of shaft (222 1uons

minute

The equivalent load imposed on the bearing (Newtons)

Although there do exist other calculations involved in bear-
ing design problems, these calculations are omitted in order to
simplify discussion of the domain knowledge.

The Representation Schema

The knowledge pertaining to bearing design problems can
be represented in any kind of representing language. Case-Based
Reasoning Language (2)(CASL) is used to represent bearing de-
sign domain knowledge. CASL is a language specially used
for Case-Based Reasoning. The contents of a case-base are de-
scribed in a file known as a case file, using the language CASL.
The reasoner uses this case file to create a case-base in the com-
puter’s memory, which can then be accessed and adapted in order
to solve problems using Case-Based Reasoning techniques.

General Syntax and Semantics of CASL . Like any other rep-
resenting language, CASL has strict syntax, semantics, keywords
and operators. The syntax of CASL specifies the grammar rules
of organizing knowledge, and the semantics of CASL give the
concise interpretation of a sentence written in CASL with cor-
rect grammar. CASL defines some basic types in the language:
identifiers, strings, numbers and operators, etc..

Copyright (C) 2000 by ASME

CASL nommally divides a case-base into several modules,
each of which has its own syntax features and semantic explana-
tions. These modules are the following:

[Introduction]

Case Definition

Index Definition

[Modification Definition]
[Pre-processing Rule Definition]
[Repair Rule Definition]

Case Instance

CASL semantics define the meaning of a sentence by spec-
ifying the interpretation of the keywords and basic types, and
specifying the meanings of operators. In the syntax blocks of
CASL, all keywords and literals are given in bold type. The brief
explanations of primary modules are given below:

1. Introduction. This module defines introductory text which
is displayed when the reasoning process (reasoner) is run. The
purpose of the text is to help the user understand the contents of
the case-base or anything else of note.

2, The Case Definition. The purpose of this block is to define
the problem features contained in a case.

3. Index Definition. The purpose of this module is to define
which fields are to be used as indices.

4. The Adaptation Rule Definition. The purpose of this block
is to define rules used to modify a retrieved case from the case-
base to make it fit the current problem specifications. The global
repair rule definition defined in this module allows adaptation
rules to be applied on any modified case. The rules defined here
are derived from domain knowledge, formulae and constraints.

5. Case Instance Definition. The purpose of this block is to
define the structure of a case instance. A case must contain two
parts: the problem part and the solution part. The local repair
rule definition defined in this module allows adaptation rules
to be associated with a case. These rules are invoked after the
global adaptations have run their course.

Examples for Bearing Design Domain Representation.

The feature definitions for user input specifications. When
a bearing for a machine is designed, certain working conditions
are specified. These specifications are the input to the problem
solver, or CBR reasoner. The “case definition is” block in CASL
is used to structure the input specifications. It structures the
knowledge about case instances and input problems by defining

the primary features of a problem. Following the keyword case
definition is is the definition of problem features. They can have
different weights according to their importance in the problem
definition. The keyword weight is is used to specify the weight
of a feature.

In the bearing design problem, the most important features
are axial load and radial load. These features’ weight values are
set to be 5 (reference weight). Load direction, shaft housing di-
ameter, allowed radial limited space, etc., are not that important,
comparatively speaking. Therefore, their weight values are set to
be 0 (reference weight). A sample case definition using CASL is
given below:

case definition is

field shaft_housing_diameter type is (d-12 24,d 12 28) weight
is §;

field load_direction type is (radial,axial,combined) weight is 0;
field radial limited_space _requirement type is (Yes,No) weight
is 0;

field radial load type is number weight is S;

end;

—_—

Some explainations are given below:

1. The feature shaft_housing diameter defines shaft and hous-
ing diameters. The purpose of this field is to define a series
of possible shaft and housing diameters which may appear
in the problems.

2. The load direction field defines the load direction which is
applied to the bearing. The purpose of defining this field
is that some bearings can only carry axial direction loads,
some can only carry radial direction loads, and some can
carry loads in both directions.

3. The feature radial limited space requirement defines the
available radial space in the machine in which the designed
bearing can be assembled. In some cases, the design has cer-
tain assembly space requirements for special purposes. That
is, the available space for bearing design may be restricted
in a certain dimension. These space requirements can help a
designer predetermine his choice of bearing.

4. The field radial Joad defines the magnitude of the load
which is applied to the bearing in the radial direction. This
is the most important factor in deciding the bearing design
for a machine, so we specify the field weight as 5 (reference
weight).

The index feature definition. This part defines the fields
which are used as indices when searching for a matching case.
The index scheme defines the methods by which the reasoner
should access the case memory. Indices are intended to stream-
line the matching process. The index features are parts of the

Copyright (C) 2000 by ASME

new problem specification. For example, we use the features
shaft_housing diameter and load direction as main indices to
search the knowledge-base. The sample representation is given
below:

index definition is
index on shaft housing _diameter; index on
load_direction;

The definitions of adaptation rules. When the old bearing de-
sign whose “description of problem definition” part is the most
“similar” to the current problem definition is retrieved from the
case-base, its solution part must be modified to fit the current
probiem definition. The reasoner performs adaptations to an old
solution according to certain rules defined by domain experts.
The repair rule definition is block of CASL can be used to de-
fine those rules. In the bearing design problem, the following
rules (strategies) are defined:

1. Perform simple parameter substitution: substitute parame-
ters of old problem definition into new user input.

2. Perform old solution adjustment to make it fit substituted
user input (current problem) according to domain formulae.

3. Check global constraints defined in the case-base to guaran-
tee that no conflicts result.

In the sample given in Algorithm 1, the change value 1 is
an adaptation rule. It tests a certain condition (represented by a
formula) first; when the condition is satisfied, the action is fired.
The action here is the recalculation of bearing life (represented
by a formula) according to the current user input.

Algorithm 1: Adaptation knowledge representation:

¢y repair rule definition is
) repair rule change_value_l is
3) when

) (0.37 x radial Joad + 2 * axial load)
> radial load

) then
6) evaluate bearing_life to
(7) 108 +support value _dynamic_C3

(0.37*radial Joad+2x*axial load)360xaverage_speed
8) repair;
9 end;
(10) end;

The definition of a case stored in the case-base. The past
experiences of bearing design for applications are stored in the

case-base. Representation of these experiences requires the de-
sign of certain structures which can represent cases properly.
Normally, an experience (case) includes a problem statement part
and a solution part. The case instance is block of CASL provides
a kind of structure and function. This block defines the same
structure of problem statement as the case definition is block
defines.

In a bearing design for an application, some relationships
between the problem statement and the solution are unique only
for this design (case). For this reason, some features of a case
are defined as “local”, meaning the attributes for these fea-
tures are valid only for this design. For example, the features
average speed and expected bearing life are defined as “local”
because every bearing designer specifies his own shaft speed and
requires his own expected bearing life. Also, every bearing has
its own permissible speed limitation defined by the manufacturer
and its own life expectancy according to the working environ-
ment.

If it is necessary to define some rules to adapt “local” fea-
tures, then these rules must be specified as "local”. That is, the
“local rules” are defined in a case instance is block. In the given
sample below, the rules rule_I is “local” because this rule check
constraints for “local” features: expected bearing life . A sample
representation of a case is Algorithm 2:

CASE-BASED REASONING SYSTEM
System Overview

The case-based reasoning engine, also called reasoner, pre-
sented here is a program with a Graphical User Interface. It
takes problem specifications and a case-base file as its inputs,
performs reasoning about the problem, and returns an answer to
the user automatically. The reasoning engine of a case-based
system consists of four process modules; each of those modules
performs certain functions. The modules interact with the case-
base and form a reasoning cycle. The first module, Retrieved
case, takes the current problem specifications as input and out-
puts a retrieved case. The second module, Solved case, decides
whether a retrieved case needs to be adapted. This module ei-
ther returns to the user a solution without further modification or
passes a solution to the next module which will perform adapta-
tion on the case. The third module, Repaired case, performs this
adaptation and returns an adapted case to the next module. The
fourth module, Learned case, decides whether this new resolved
case needs to be stored in the case-base.

The following sections will present how these modules were
implemented in our system.

Copyright (C) 2000 by ASME

Algorithm 2: Case Instance Representation:

09 case instance needle_roller_hk15]12
is

) shaft_housing diameter =d_1521;

) load_direction = combined;
@) radial_limited_space_requirement = Yes,
(5 axial limited_space_requirement = No;

(6) radial_load = 550;

@) axial_load = 100;

(8) local field definition is

9 field average_speed type is number;

(10) field expected bearing life
type is number;

(11) solutionis

(12) bearing type = needle_roller hk1512;

(13) calculation_speed = 10000;

(14) drill_hole_diameter = 15;

(15) outer.diameter =21;

(16) width=12;

(17) support_value dynamic C = 7650;

(18) permissable_speed = 11000;

(19) bearing life = 11350;

(20) local repair rule definition is

(21) repair rule rule_! is

(22) when
(23) expected bearing life > bearing life
(24) then

(25) pr ’Abandon your selection ! ’;

(26) pr ’Bearing life can not meet your requirement!’;

(27) reselect;
(28) repair;
(29) end;
(30) end;

Main Reasoning Engine Algorithm

The flow-chart in Figure 5 shows the main algorithm be-
hind the implementation of a reasoning engine. The two hollow
arrows in the figure illustrate that the reasoning engine must in-
teract with the case-base.

The flow-chart shows that the requirements of a module can
be broken into pieces or procedures called by the main function.
It also shows that a CBR engine forms a reasoning loop. This
reasoning loop begins with the procedure User Specification and
ends with the procedure Add Case. Primary procedures used in
the main algorithm is discussed below separately.

Building the Index

The performance of a CBR system is determined by the
CBR reasoning engine whose efficiency in turn is determined

Reasoning
Engine
Functions

Preprocess User

Figure 6. The index building and case-base memory organization

by the design of the index scheme and case-base memory organi-
zation. The index scheme design includes how to specify index
features and how to build them in computer memory. The in-
dex features are set by domain experts and are represented by
the block index definition is of CASL. The procedure Build In-
dices takes the representations of index features as input and uses
these to build the index scheme. A linked-list data structure was
chosen to hold the index feature input. The procedure Build In-
dices places all the index features into the linked-list, and at the
same time, builds the case-base memory organization. Figure 6
on Page 7 illustrates these ideas.

In this CBR system, for bearing design, two features have
been specified as index features: shaft diameter and load direc-
tion. Each index feature is a node of the linked-list; the data type
for the nodes is the struct type in C. The fields of the struct are
used to hold attributes of the index features. Figure 6 shows this
data structure for the index features and case-base memory. The
procedure Build Index first links the index features shaft diame-

Copyright (C) 2000 by ASME

Mathematical F(A) F(@B)

Model for ey

Searching o

Similar Cases Cm . <@
C(d) -

{C(a), C(b) } CCF(A) N F(B)

Data Structure of c..k

[val—»{ca |—p{cw]

3> M)‘—@)——»l c® | D
vit |—3 ce | cm]

Figure 7. The mathematical modei and an example for searching similar
cases

ter and load direction. It then checks every attribute of the index
features. For each attribute, Build Index searches for all the cases
with the same attribute value in the case-base file and links all of
these together.

Case Matching, Ranking and Retrieving

The purpose of building an index scheme is to speed up
searching. Here, searching means to find a set of cases from the
case-base which are similar to the current input case. However,
the goal here is to find the case which has the maximum similar-
ity to the input case. Thus, a mechanism to rank the similarity of
cases is needed. In this section, we discuss how to achieve these
two goals: finding a similar case set and finding the most similar
case in this set.

First, a mathematical model is presented to show how to find
a set of similar cases in the case-base. What are similar cases?
Given an input case with certain index features and their at-
tributes, similar cases are those cases whose index features
and attributes are exactly the same as the corresponding in-
put case’s. Figure 7 shows these ideas.

The upper part of the Figure 7 presents the mathematical
model for finding similar cases. The left and right circles rep-
resent attributes F(4) and F(B) of index features 4 and B of
an input case respectively. The C(n) represents a case n. If
the left circle includes C(d),C(d),C(h) and C(a), which are the
cases with attribute F(4) of feature 4, and the right circle in-
cludes C(i),C(j),C(a) and C(h), which are the cases with at-
tribute F(B) of feature B, then their intersection contains cases
C(a) and C(h), which have both attribute F(4) and F(B). This
can be represented in set theory:

k=m * Features
DAA)=Y, dK)(G))
k=1
D(IA)
k=m
D@B)=Y, d*(k)(ij)
k=1
Relevance Matrix
\% Vi 1 Vi
FRM) ®R) (k)(R)n
d(ky(11 dk)1n)=
VDL | 1 weiD (kg‘f“‘:‘l’v‘)‘v;(’}'.f"’”
3 d®)(nl)= d
V®&@Dn %%ﬁifmn 1(3)v(vn(':n);

Sim(F(NR), FE&)Dj) =0, %, (1- ad/ Ar)

Ad/Ar: difference of feature value / difference
range value between input and retrieved case
feature

Figure 8. The Nearest Neighbor Matching algorithm

{C(@),C(h)} CF(4)NF(B)

The lower part of the Figure 7 gives a corresponding exam-
ple which illustrates how this process occurs in the case-base.

After all similar cases are found, a mechanism to find the
most similar case in this set is needed. We used the Nearest
Neighbor Matching algorithm (NNM) (4). Figure 8 shows how
this algorithm works in our CBR system for bearing design. To
simplify discussion, we assume that all the component loads (ax-
ial load and radial load) applied on the bearing are at the same
direction.

The basic idea of the NNM algorithm is to compare the at-
tribute value of each feature of each case in the set of similar
cases to every corresponding feature’s attribute of the input case,
calculate the comparison values and then sum them for each case
to get a total comparison value.

In the upper part of Figure 8, the circles represent cases,
the dots represent attribute values of features, index i represents
the input case, and index j represents cases in the set of similar
cases. The index k represents the features in a case. The case 4
and case B in the figure are the cases from the similar cases’ set.

Copyright (C) 2000 by ASME

The function d(k)(ij) represents the attribute’s comparison value
of one of the features (feature k) between the input case and case
A, which is equal to the formula (4):

W{(ij) * Sim(F (k)(R)i, F (k) (1))

where:

k: a feature of a case.

W(ij): the weight of a feature, defined in the case-base file.

Sim(F(k)(R)i,F(k)(1)/): the degree of similarity between
one of the features in the input case and the corresponding feature
in a case from the similar case set.

The total attributes’ comparison value for a case is D(k)(IA),
which is equal to the numeric function

é, W(ij) * Sim(F (k) (R):, F (k) (1))

After finishing all calculations, the NNM algorithm selects
the case which has the highest value of D(k)(ij) to be the most
similar case.

The key thing in the NNM algorithm is the calculation of
an attribute’s comparison value for a feature between a similar
case and the input case. A matrix called the relevance matrix,
shown in the lower part of Figure 8, is used to explain how to
calculate every feature’s attribute comparison value. In the ma-
trix, F(k)(R)i means “the feature k of a case from the similar
case set which has possible attribute i, where the range of i can
be from 1 to some finite number”. F(k)(I)/ has a similar mean-
ing except in reference to the input case. So, the first row of the
matrix represents all the possible attributes of feature & of a simi-
lar case, and the first column represents all the possible attributes
of feature k of the input case. The intersection of row and col-
umn is the comparison value of the feature k. The W (ij) is the
weight of a feature in a similar case. The degree of similarity
Sim(F (k)(R)i,F(k)(I)j) has three possible values. First, if two
features match exactly, the degree of similarity equals 1. Sec-
ond, if two abstract symbols are similar, its value is 43. Third, if
two numbers are similar (i.e., both fall within the range defined
in the modification block), then a value is calculated which re-
flects how close they are in proportion to the range. Then, the
Sim(F(k)(R)i,F(k)(I)j) can be calculated by:

Ad

1-=

Ar

where: Ad is the difference of the feature values be-
tween the input case and the retrieved case and Ar is the
difference range value. For example, if the attribute value

Algorithm 3: Case matching, ranking and retrieving:
Input: User’s input problem specification.
Output: The retrieved case with highest

weight.

MATCHING _RANKING_RETRIEVING(UserInput)
) begin

) while true

3) do

4 Index_List_Searching();

%) Case_List_Searching();

6) Computing_Weight_Cases();

@) if Case Matching Exact = True,
8) return Retrieving Case();
) else

(10) Evaluating Similar Cases();
493 Retrieving_Heaviest_Case();
(12) end

of feature radial load for the input case is 100 Newtons,
and the corresponding value for a similar case is 120 New-
tons, then Ad = 120-100=20. If the definition for the
range of similarity is from 90 to 140, then Ar = 140-
90=50.2 . Similarity between 100(input) and 120(a similar case)

The Algorithm 3 defines the functions which implement
the finding of similar cases and the most similar case as
mentioned above. The procedure Index List Searching()' per-
forms searching on the linked-list of index features. Pro-
cedure Case_List_Searching() searches out cases whose at-
tribute value for certain features is the same as the input case’s.
Procedure Computing_Weight Cases() performs calculation of
the weight of a retrieved case and returns this. Procedure
Evaluating Similar Cases() performs ranking for a case with a
weight. Procedure Retrieving Heaviest Case() retrieves the case
with the highest rank and returns this.

Adaptation of Cases

Very rarely, a retrieved case is exactly the same as the newly
defined problem. Most of the time, however, the retrieved case
is only a similar situation, and so problem definitions and cor-
responding solutions need to be modified so that the modified
case fully fits the current situation and its solution fully satisfies
the current problem requirements. This procedure as a whole is
called the case adaptation (repair) process. A series of rules are
defined for adapting cases. These rules are provided by domain
experts or domain axioms and are applied to each case whenever
it is necessary.

Adaptation rules are divided into global rules and local rules
The reasoner uses global rules to examine the problem fields and

Copyright (C) 2000 by ASME

RuleHeadPointer
S EE>E.
I D DpD|

o o

N

Figure 9. The data structure of global and local rules

solution fields of the retrieved case. These rules are also used to
adapt the parameters of the retrieved case and check constraints
satisfaction conditions which are specified by the knowledge-
base. If there are any constraint conflicts, the repair rules pro-
vide a new problem-solving proposal. Otherwise, they adapt the
solution of the retrieved case to the new problem. The sample
adaptation rules for global repair are described in Algorithm 1.

After the reasoner finishes checking the global rules, it im-
mediately checks the local rules defined in the retrieved case. It
applies these local rules to the retrieved case to perform local
adaptation (i.e., unique to this case). Some sample local adapta-
tion rules are given in Algorithm 2.

Figure 9 shows that a linked-list data structure is used to
store these adaptation rules. In the figure, every node has two
fields: one stores the condition of a rule, the other stores the
action. The procedure given in Algorithm 4 scans the rule list
repeatedly as it performs adaptation on a retrieved case; if the
condition part is true, it executes the corresponding actions on
the case.

IMPLEMENTATION EXAMPLES

In this section, the implementation examples of CBR system
is presented. We use screen shots to show how the implementa-
tion is carried out.

Case-Base Building

First, the system allows designer to choose search method.
This function provides the designer the flexibility to search case-
base according to his own needs. If the designer chooses the
“Search for matching case”, the system will ask designer to in-
put problem definitions. If the designer selects “Search specify-
ing indexes separately”, the system will ask designer to specify

10

Algorithm 4: Algorithm for case adaptation:
Input: Retrieved case.

Output: The modified case.
CASE_ADAPTATION(RetrievedCase)

(1) begin

) while true

3) do

“) if Global Rules = True;

®) Finding_Global Rule_Headpointer();
) Searching_Global _Rules();

Q) Apply Modifying Retrieved Case();
8) Parametric_Adaptation();

9 Constraints_Adaptation();

(10) Evaluating Solutions();

€33 else

(12) Finding_Local Rule_Headpointer();
(13) Searching_Local Rules();

(14) Apply Modifying Retrieved Case();
(15) Parametric_Adaptation();

(16) Constraints_Adaptation();

17) Evaluating Solutions(};

(18) return Modified Satisfied .Case;
(19) end

Specifythesear)
method. {)
i

Figure 10. Window for selecting searching methods

the indexes and their values he wants to use. See Figure 10 to
illustrate how to select searching methods. In this window exam-
ple, we select “search for matching case”.

Problem Specifications

Global Problem specifications Knowledge acquisition is im-
plemented by system interacting with user. So the following win-
dow provides designer to input his problem specifications, like
shaft (bearing bore) diameters, load direction, allowed bearing

Copyright (C) 2000 by ASME

Listboxtolistpossibkdiameters) .
ofbearingsandhousingdiameters Designerspecifiesloaciiio

Y
& Mo Mo
L s S
Inputloads
Figure 11. Window for problem specifications

axial/radial space and the amount of loads. Here, different inputs
will bring up different other windows and message boxes to in-
dicate different reasoning resuits. In this window example, we
input follow parameters: See Figure 11 to illustrate using exam-
ple parameters.

Shaft (Bearing Bore) and Shaft Diameter : d-20-52,
which means that the shaft diameter (bearing bore diameter) is
20mm and housing diameter is 52mm.

Load Direction : Combined, which means that the loads
applied on bearing are combined load (can be decomposed into
axial load and radial load).

Required Radial Space: No, which means that bearing is
designed without radial space requirement, that is, the bearing is
rigidly mounted on shaft.

Required Axial Space: No, see above explaination.

Radial Load: 1000, which means the external radial load
applied on bearing is 1000 Newton.

Axial Load: 500, which means the external axial load ap-
plied on bearing is 500 Newton.

After designer inputs all above parameter, the system will
perform following actions:

1. Searching index linked list which index feature is
shaft(bearing bore) diameter and housing diameter, their val-
ues are 20mm and 52mm.

2. Searching index linked list which index feature is load di-
rection, its value is “combined”.

3. Linking all the cases satisfy above indexes requirements.

4. Comparing other features to each case selected according to
index features

5. Calculating the weight of each case.

6. Listing priority of each case.

11

Figure 12. Window for using Weight Algorithm

Average Speed Expected Life
{10000 {10000
o Cancel: |

Figure 13. Window for inpufting local problem specification

Local Problem Specifications

After the designer finishes his global problem specifications,
the another message box will be brought up. It asks whether de-
signer wants to use “Weight Algorithm”. If the designer answer
is Yes, the system will perform actions based on NNM algo-
rithm (4). If the designer’s answer is No, the system will simple
assign all the features’ weight as 0, and find similar cases based
on numbers of matched features. See Figure 12 on Page 11 to
illustrate message box which ask user whether he wants to use
weight algorithm. In this window example, we select “Yes”.

In this system, there are two local fields which define the
features being specific for each case. In this window, we input
the rotation speed of shaft and the bearing life that the designer
is expected. See Figure 13 to input local probiem specification.

Adaptation

While all of the details of the adaptation procedures are hid-
den from the designer, the system presents a series of message
boxes which let designer know which case it is using to per-
forming adaptation. In addition, we keep track which cases have
failed during adaptation. This loop continues until the system
finds a case which satisfies problem specification or announces
it failed to find any case that could fit the current problem. See
Figure 14 to keep track the adaptation for cases.

Copyright (C) 2000 by ASME

Lase Repaming

Lase Nepaiing

PERFORMING REPAIRS ON cylindrical. roller_nud04ECP...

Figure 14. Message box shows the system is performing adaptation on
a retrieved case

Cum P—
Jorndrca_robe_nX - 3 e ‘
| Swemgn Sumed fw®
|
[Belateet St~
| Snaing Ty - il e |
| * Dl ot Dlamater L
| Oumbiewsws - BT
| SoomotVemOwmo fORE
; Pamiseable Spomd T
L Bomirgtle | L,
=]
Figure 15. Window shows the successful case

After the system has found a set of retrieved cases and per-
formed successful adaptation on one of these cases, it automati-
cally returns the adapted case. The system can also return a suc-
cessful or failed case to the designer, allowing the designer to un-
derstand why the case is successful or why the case is failed; and
so the designer can use this case as a starting point for design-
ing. Figure 15 keeps track the adaptation for successful cases.
Figure 16 shows a case that is failed for adaptation.

12

Failed to repair uli ssiecied cazes. Will Dinplay the last repaired cass

Qasoe
|seherical_rolier_21304C |

Figure 16. Window shows the failed case

CONCLUSIONS AND FUTURE WORK
Conclusions

This article discussed a system that uses Case-Based Rea-
soning as both a cognitive model and problem solving method-
ology to deal with the bearing design problem in mechanical en-
gineering applications. We believe that this work has produced
several insights into how Al and CBR techniques can be better
applied to more realistic engineering problems:

1. Knowledge Capture: Because the knowledge space for
the bearing design domain is extremely incomplete and dy-
namic, it is difficult to formalize general, a priori, rules to
help the designer solve problems or automate the design pro-
cess. In contrast, by using CBR techniques, a set of bearing
design experiences can be stored in a case library to guide
the designer. Through building a knowledge acquisition sys-
tem, an autonomous CBR intelligent system can evolve and
grow more easily than a traditional knowledge-based sys-
tem.

2. Adaptability: CBR techniques can integrate knowledge ac-
quisition, reasoning mechanisms, knowledge storage and
learning in one platform. Therefore, a system using CBR
techniques can possibly grow and be expanded to encom-

Lo

-

Copyright (C) 2000 by ASME

pass a wider variety of assemblies without changing the fun-
damental system structure,

3. Augmenting Intelligence: Our system, rather than being
completely autonomous, interacts with the user to obtain
knowledge. It provides the flexibility to draw design con-
clusions either from the reasoning system itself automati-
cally or by allowing the designer to choose a past case as his
problem solution directly.

4. Human-Guided Search: Our system also provides the flex-
ibility to atlow the designer to loosen index constraints to
continue reasoning when an exact searching fails. In this
manner, the designer has the most opportunities to obtain a
design solution which is useful for his current problem. This
solution also can be used as a reference for his current de-

sign.

Contributions and Future Work

The contributions of this research touch on both A/CBR and
engineering design. We view the system for Case-Based Bear-
ing Design as a template for other CBR environments to create
design aides focused for different design problems. We see the
following areas for future research.

1. Knowledge engineering issues: Because of the limitations
of the CASL used to build our system, there are still many
limitations in expressing design intent. The case collection
process is quite complicated and inefficient, and case-base
maintenance is very unstructured, which makes debugging
the case-base very difficult. Better methodologies for case
collection and good protocols to maintain the case-base are
needed.

2. Knowledge acquisition issues: We built attribute (features)
pairs at design time to allow the user to interactively in-
put his knowledge. If the system is expanded (especially
cross-domain), it would be very difficult to enumerate ail
the features at design time to cover any and all possible
problem specifications. Therefore, the development of an
autonomous knowledge acquisition system is a future chal-
lenge for us.

3. Indexing issues: We built a fixed feature-based index
scheme at design time to speed up searching. However, as
stated above, if the system is expanded, it would be impos-
sible to optimize this choice of index features. Also, at run
time, many other features may become important primary
design factors, but, since these features are not coded into
the case-base, the system will fail to find cases which have
these important features. How to develop a dynamic index
scheme to facilitate this situation will also be a challenge for
us.

4. Graphical reasoning issues: Since almost every designer
uses CAD or other graphical software to conduct his design,

13

how to combine textual reasoning procedures with graphical
reasoning procedures is another very important issue.

5. Cross-Domain reasoning issues: The system presented in
this article operates in a very specific domain; expansion
of this system to other similar design domains is an im-
portant area to explore as well. Since we will correspond-
ingly need to develop cross-domain knowledge representa-
tions and adaptations, a cross-domain reasoning system be-
comes very complicated, but also very useful.

Acknowledgements. This work was supported in part by a Na-
tional Science Foundation (NSF) CAREER Award CISE/IRIS-
9733545 and Grant ENG/DMI-9713718; additional support was
provided by the National Institute of Standards and Technology
(NIST) under Grant 60NANB7D0092 and AT&T Labs’ Internet
Platforms Division.

Any opinions, findings, and conclusions or recommenda-~
tions expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Founda-
tion or the other supporting government and corporate organiza-
tions.

REFERENCES
Agnar Aamodt and Enric Plaza. Case-based reasoning: Foun-
dational issues, methodological variations, and system ap-
proaches. Artificial Intelligence Communications, 7:39-59,
1994,
Center for Intelligent System. Univer-
sity of Wales. http://www.aber.ac.uk/ de-
swww/Research/arg/cbrprojects/getting caspian.html. Caspian.
HEXAGON. http://www.hexagon.de. Bearing calculation,
1999.
Janet Kolodner. Case-based Reasoning. Morgan Kaufmann
Publishers, Inc., San mateo, CA 94403, 1993.
C.K. Riesbeck and R.S. Schank. Inside case-based reasoning.
Eribaum, Northvale, NJ, 1989.
Donald F. Wilcock and E.Richard Booser. Bearing Design And
Application. McGraw-Hill Book Company, Inc., 1957.

Copyright (C) 2000 by ASME

